PowerFactory Applications

Applications for Distribution Systems
Distribution System Analysis

- **Project Scope**
 - Network Planning, i.e.
 - Voltage plan studies (distributed generation)
 - Network optimization
 - Power restoration strategies
 - Connection requests
 - Integrated analysis of MV and LV networks
 - Replacement of former software PRAO

- **Number of PowerFactory Users**
 - 8 regions with 15 regional planning offices
 - > 300 users (network planning)

- **Network Statistics**
 - ~ 2200 MV grids
 - ~ 25,000 MV feeder
 - ~ 845,000 LV grids (secondary ss)
 - MV grid: ~ 592,000 km
 - LV grid: ~ 664,000 km
 - Grid serves 32 Mio. customers
Solution Architecture for National Process

Solution is highly parallelized
Smart Grid Application

LV Grid Analysis
• Constraint detection (overloaded transformers, excessive voltage drops,...)
• On-demand investigations

Daily Process
• Import of daily load/generation characteristics from smart meters
• Import of real temperature and construction of missing characteristics using temperature
• Execution of 3-phase load-flow sweep over the considered day
• Capturing of extreme conditions and export of corresponding snapshots to result database
• Computation / update of average conditions and storage in the result database
• Export of daily cases for on-demand analysis
Analysis Functions
Distribution Network Tools

Optimal Power Restoration

- Conduct optimal restoration analysis for a single element (no failure data required)
- Report recovery scheme (various stages)
- Tracing functionality
Power restoration in distribution networks incorporates *Tie Open Point Optimization* methods to achieve an utmost level of resupply.
Reliability Analysis

- Incorporates **Optimal Power Restoration** for most accurate simulation of resupply strategies

- Support of both *balanced* and *unbalanced* network representations (reliability & tie open point optimization)

- Feeder constraints
 - Maximum allowed voltage drop/rise (global or feeder-wise)
 - Particularly important in network with high portions of distributed generation, where bidirectional power flows may occur

- Load states and load distribution states
Reliability Analysis – Contribution to Indices

• Contribution of individual contingencies to the system reliability indexes (SAIFI, SADI, ENS, EIC…)

• Example: contribution to Expected Interruption Costs (EIC) based on one part of the network
Backbone Calculation

- **Backbone:** Electrical path between two meshed feeders, separated by a tie open point
- Various strategies to determine backbones
Power Restoration traverses various phases ("Sectionalizing"):
- Stage 1: Remote Controlled Switches
- Stage 2: Switching of breakers with Shc Indicators
- Stage 3: Manual Switching of all breakers

Where should Remote Controlled Switches be located to have most effective Power Restoration?
Optimal Remote Control Switch (RCS) Placement

- Optimizes RCS locations within feeders to minimize Energy Not Served (ENS), Expected Interruption Costs (EIC) or balance ENS

Calculation results of optimal RCS placement

<table>
<thead>
<tr>
<th>Feeder:</th>
<th>Feeder 1, Feeder 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone:</td>
<td>1</td>
</tr>
<tr>
<td>Number of new RCS per backbone:</td>
<td>1</td>
</tr>
<tr>
<td>Expected ENS:</td>
<td>1,240 MWh/a</td>
</tr>
<tr>
<td>Optimal RCS:</td>
<td>Switch2</td>
</tr>
<tr>
<td>Existing (calculation-relevant) RCS:</td>
<td>None</td>
</tr>
</tbody>
</table>
Optimal Remote Control Switch (RCS) Placement

- **Optimizes RCS locations** within feeders to minimize

 Energy Not Supplied (ENS), Expected Interruption Costs (EIC), or balance ENS

<table>
<thead>
<tr>
<th>Calculation results of optimal RCS placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder:</td>
</tr>
<tr>
<td>Backbone:</td>
</tr>
<tr>
<td>Number of new RCS per backbone:</td>
</tr>
<tr>
<td>Expected ENS:</td>
</tr>
<tr>
<td>Optimal RCS:</td>
</tr>
<tr>
<td>Existing RCS on backbones:</td>
</tr>
</tbody>
</table>

- FD_26
- FD_26_FD_35
- 2
- 8,264 MWh/a

- SW_0595
- SW_1156
- None
Distribution Network Tools

Voltage Profile Optimization

- Consider two worst-case scenarios simultaneously (bidirectional power flows):
 - High load & low distributed generation
 - Low load & high distributed generation

- Optimization of distribution transformer tap positions

- Allows for a combined study of MV and LV networks
Cable Sizing

- **Cable Reinforcement**
 - Support of unbalanced networks
 - Constraints: loading, voltage per terminal and along feeder
 - When applied to a network without types, PF will automatically assign types from the library, with consideration of loading/voltage drops
 - Report on short-circuit loading of lines/cables

- **Automatic Cable Sizing**
 - Cable sizing optimization based on international standard:
 - IEC 60364-5-52
 - BS 7671
 - NF C15-100, C13-200
Techno-Economical Analysis

- Economic assessment of network reinforcement strategies (expansion stages) under consideration of:
 - Cost of electrical losses
 - Economic impact on the failure rates (reliability)
 - Costs for the expansion:
 - Investment costs, additional costs per year
 - Commercial equipment value: original value, scrap value, expected life span
 - User-defined costs
- Output: Net Present Value (NPV) of the expansion strategy over the selected period
Protection

- Short-Circuit trace
 - Based on complete short-circuit method
 - Accounts for the effect of switching actions on the fault current

- Tabular relay settings reports

- Reach settings for distance relays in Primary or Secondary ohms